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Abstract
The study of algebraic symplectic models in high energy physics and even in
molecular genetics has received much attention in the past decades. In this
paper, we first survey one known bosonic realization with N types of bosons
operators in a (2j + 1)-dimensional space (with j being the semi-integer).
Then, using the general theory of differential invariants, we determine two
sets of sp(2j + 1)-differential invariants. In one set, when N � 2j + 1, all
independent invariants of any order are obtained in a simple closed form.
When N < 2j + 1, we could present only particular matrix forms. In the
latter case, the differential invariants up to the second order are explicitly
presented for the symplectic algebras sp(2), sp(4) and sp(6) realized by up to
three types of bosons. As applications, we present the simplest sp(2)-invariant
Lagrangians, null-Lagrangians, new solutions to the Helmholtz inverse problem
and evolution equations, which will be of fundamental importance in the
construction of dynamical systems invariant under the symplectic group.

PACS numbers: 02.20.Sv, 03.65.Fd

1. Introduction

The essence of equivalence is the determination of when two mathematical objects, such as
differential equations, can be identified under a change of variables. Conditions guaranteeing
equivalence are frequently required and most effectively formulated in terms of invariants,
which are quantities unaffected by the changes of variables or by the action of transformation
groups [1, 2]. Such general topics arise naturally in mathematical methods of physics and are
essential tools in many models of modern physics [3]. In a physical model where the observable
properties are governed by a system of differential equations, symmetry requirements are
postulated in many cases. As differential invariants completely characterize invariant systems
of differential equations [1, 4], they are the building blocks of physical theories where some
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form of invariance shall appear in the basic differential equations. Besides this important
issue, where the usual application of differential invariants is useful in providing sets of new
invariant nonlinear differential equations and to characterize invariant variational problems,
new applications in the area of image processing and computer vision are beginning to occur
in the literature [5, 6].

In physics, many important symmetry properties are described by Lie groups [7–10] or,
more precisely, by their associated Lie algebras, which can be used to write the differential
equations of a specific model. To accomplish that, it is necessary to realize the required Lie
algebra by differential operators specially designed for each model. Once the realization is
given, its differential invariants can be computed by either tools of the prolongation theory
[1, 11], or more specific methods [12, 13].

While the calculation of differential invariants has been fostered by applications related
to both orthogonal groups [13] and the Poincaré group [12], the same implementation for
symplectic algebras has been overlooked despite its importance to classical mechanics, optics
and quantum physics [14–16]. The main goal in this paper is to add more studies about
symplectic differential invariants (see [11] for a recent contribution), which will be the
foundations of dynamical systems invariant under the symplectic group.

The symplectic algebra sp(6) has been recently applied in molecular biology, where an
algebraic model is under consideration to study the genetic code (evolution, functionality, etc)
[17–19]. Regarding this model, Chacón and Moshinsky have realized the sp(6) algebra with
two types of bosons as a subalgebra of u(6) and stressed that the boson operators ‘may have
some significance as fundamental blocks in the genetic code’ [20]. This same algebra, although
realized by boson operators in a different way, is also used in algebraic models developed in
both nuclear and particle physics [21–26]. Therefore, establishing a dynamical system with a
prescribed symplectic symmetry is fundamental to algebraic models using symplectic algebras.
Naturally, the first step in that direction is the characterization of their differential invariants
and the identification of Lagrangians (locally) invariant under the symplectic group.

The differential invariants obtained in this work yield an explicit functional basis for locally
invariant partial differential equations, whose solutions are related by symplectic operations.
This new class of nonlinear partial differential equations with a predefined symmetry property
not only offers its well-known symmetry-related operational benefits but also restricts possible
dynamical systems and variational problems with such symmetry. Indeed, the construction of
a dynamical system with a prescribed symmetry and adapted to a specific Lie group chain is
a challenging open problem in physics.

This paper is organized as follows: in section 2, the symplectic algebras sp(2j + 1) are
realized by N types of boson operators in a (2j + 1)-dimensional space. Section 3 presents the
symplectic vector fields prolonged in a jet space spanned by one dependent variable (or scalar
field) and its high-order derivatives. The symplectic differential invariants are obtained, both
in a closed form when N � 2j + 1, due to the existence of an invariant contact coframe, and
in matricial forms when N < 2j + 1. In the latter case, the differential invariants up to second
order are explicitly presented for the symplectic algebras sp(2), sp(4) and sp(6) realized by up
to three types of bosons. In section 4, we present examples of sp(2)-invariant Lagrangians and
evolution equations as well as null-Lagrangians and new solutions to the Helmholtz inverse
problem of the calculus of variations. Our concluding remarks are given in section 5.

2. A bosonic realization for symplectic algebras

Lie algebras are frequently realized by boson operators and a polynomial basis in the creation
operators is desired to build their irreducible representations. When there is only one type of
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boson, only the symmetric and anti-symmetric irreducible representations admit a polynomial
basis. However, most applications in physics also need the mixed irreducible representations
which require more than one type of boson.

Consider N particles in a (2j + 1)-dimensional space, with j being the semi-integer. Let
xαm and pαm be the components of the coordinates and momenta of each particle, respectively.
Let Greek indices indicate particles (α = 1, 2, . . . , N) and Latin indices indicate vector
components in spherical form (m = −j, . . . , j) with the symplectic metric (see [27, chapter
24] and [28, chapters 5 and 6])

gmm′ = (−1)j+mδmm̄′ gmm′ = −gmm′ = gm′m m̄ = −m. (1)

Therefore, the corresponding coordinates and momenta in their contravariant form are given
as

xm
α = (−1)j+mxαm̄ pm

α = (−1)j+mpαm̄. (2)

Let us introduce, respectively, creation and annihilation operators (also known as bosonic
operators) by the usual definitions [29, 30]

a†
αm = 1√

2
(xαm − ipαm) am

α = 1√
2

(
xm

α + ipm
α

)
. (3)

Then, the usual commutation relations for the bosonic operators forming the Weyl algebra[
am

α , a
†
α′m′

] = δm
m′δαα′

[
am

α , am′
α′

] = [
a†

αm, a
†
α′m′

] = 0 (4)

can be obtained from the well-known quantum relations (h̄ = 1) [29, 30][
xm

α , pα′m′
] = iδm

m′δαα′ (5)

where all other commutators are zero. It is a fact that unitary algebras can be realized by
bosonic operators [31]. Indeed, not only the algebra but also their irreducible representations
can be realized by polynomial expressions in the creation a

†
αm operators [20, 32–34], which,

together with the commutation relations (4), allow us to interpret the annihilation operators
am

α as the differential operators

am
α = ∂

∂a
†
αm

(6)

when they are acting on polynomials in the creation operators. Also, in order to simplify the
notation, let

ηαm = a†
αm ξm

α = am
α = ∂

∂ηαm

. (7)

Now, the symplectic algebras sp(2j + 1), with j being semi-integers only, can be realized
as [20]

Lm
m′ = Cm

m′ + (−1)m+m′Cm̄′
m̄ Lm̄

m̄′ = (−1)m+m′Lm′
m (8)

where

Cm′
m =

N∑
α=1

ηαmξm′
α (9)

realizes the unitary algebra u(2j + 1). Note that the vector fields (8) are horizontal, i.e. they
do not depend on the derivatives of the dependent variable. Although our interest lies only in
the symplectic elements, it is important to mention that the contraction

Cαβ =
j∑

m=−j

ηαmξm
β (10)
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Table 1. Polynomial basis with two types of bosons to the adjoint irreducible representation [2, 0]
of sp(4) adapted to the chain (A.1). The roots (first three columns) are given in three different
bases [43, 39]: FWS (fundamental weight system), DYN (Dynkin, formed by the basic irreducible
representations) and SRS (simple root system), respectively. The fourth column is the ‘quantum
numbers’ of each vector of the adjoint representation. The last column presents the correspondence
between the notation of [44] and the current notation shown in the fifth column.

FWS DYN SRS |σ1, σ2, h1, h2〉 Polynomial basis Lm′
m

[2, 0] (2, 0) {2, 1} |2, 0, 2, 0〉 η13η15η23 − η13η13η25 L3̄
3 −√

2E+
4

[−2, 0] (−2, 0) {−2,−1} |2, 0, −2, 0〉 η13̄η15η23̄ − η13̄η13̄η25 L3
3̄

−√
2E−

4

[1, 1] (0, 1) {1, 1} |1, 1, 1, 1〉 +η11η15η23 + η13η15η21 − 2η11η13η25 L3̄
1 −E+

3
[−1, −1] (0, −1) {−1,−1} |1, 1, −1,−1〉 −η11̄η15η23̄ − η13̄η15η21̄ + 2η11̄η13̄η25 L1

3̄
−E−

3

[1, −1] (2, −1) {1, 0} |1, 1, 1,−1〉 +η11̄η15η23 + η13η15η21̄ − 2η11̄η13η25 L1
3 E+

1
[−1, 1] (−2, 1) {−1, 0} |1, 1, −1, 1〉 −η11η15η23̄ − η13̄η15η21 + 2η11η13̄η25 L3

1 E−
1

[0, 2] (−2, 2) {0, 1} |0, 2, 0, 2〉 η11η15η21 − η11η11η25 L1̄
1

√
2E+

2

[0, −2] (2, −2) {0,−1} |0, 2, 0,−2〉 η11̄η15η21̄ − η11̄η11̄η25 L1
1̄

√
2E−

2

[0, 0] (0, 0) {0, 0} |0, 0, 0, 0〉 −η13η15η23̄ − η13̄η15η23 + 2η13η13̄η25 L3
3 H1

[0, 0] (0, 0) {0, 0} |0, 2, 0, 0〉 +η11η15η21̄ + η11̄η15η21 − 2η11η11̄η25 L1
1̄

H2

realizes the unitary algebra u(N). These realizations are equivalent to those given by
Schwinger’s technique using the fundamental irreducible representations [31]. From (4),
the commutation relations for the unitary algebras are[
Cm′

m , Cm′′′
m′′

] = δm′
m′′Cm′′′

m − δm′′′
m Cm′

m′′ [Cαβ, Cα′β ′] = δα′βCαβ ′ − δαβ ′Cα′β. (11)

Consequently, the commutation relations for the symplectic algebras are[
Lm′

m ,Lm′′′
m′′

] = δm′
m′′Lm′′′

m − δm′′′
m Lm′

m′′ + (−1)m
′′+m′′′(

δm′
m̄

′′′Lm̄′′
m − δm̄′′

m Lm′
m̄′′′

)
. (12)

The Casimir operator of sp(2j + 1) can be written as

Csp(2j+1) =
j∑

m=1/2

(
Lm

m

)2
+

1

2

j∑
m=1/2

[
Lm̄

m,Lm
m̄

]
+ +

j∑
0<m<|m′ |

[
Lm′

m ,Lm
m′

]
+ (13)

where [a, b]+ = ab + ba. This second-order invariant operator commutes with every element
of any symplectic algebra[

Csp(2j+1),Lm′
m

] = 0. (14)

Appendix A gives one possible identification of the bosonic operators Lm′
m with the roots

of sp(2) and sp(4). It also shows the polynomial basis in the creation operators (N = 2) of
two irreducible representations (see tables 1 and 2). It should be mentioned that a polynomial
basis in the creation operators for an arbitrary irreducible representation labelled by the highest
weight (λ1, . . . , λr), where r is the rank of sp(2r), can be constructed realizing the symplectic
algebras sp(2j + 1) at least with a number N = r = j + 1/2 of different types of bosons.

3. The differential invariants for symplectic algebras

The basic tools of the prolongation theory, which belong to the general theory of differential
invariants, can be found in many textbooks [1, 4, 35–37]. In all the following cases, one
(smooth) dependent variable φ = φ(η) in the creation operators η is considered because the
following results can be easily generalized to an arbitrary number of dependent variables.
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Table 2. Polynomial basis with two types of bosons to the fundamental irreducible representation
[1, 0] of sp(4) adapted to the chain (A.1). The corresponding weight system is shown in the first
three columns in three different bases [39, 43], as already explained in the caption of table 1.

FWS DYN SRS |σ1, σ2, h1, h2〉 Polynomial basis

[1, 0] (1, 0) {1, 1
2 } |1, 0, 1, 0〉 +η15η15η23 − η13η15η25

[0, 1] (−1, 1) {0, 1
2 } |0, 1, 0, 1〉 +η15η15η21 − η11η15η25

[0, −1] (1, −1) {0,− 1
2 } |1, 0, 0, −1〉 +η15η15η21̄ − η11̄η15η25

[−1, 0] (−1, 0) {−1,− 1
2 } |0, 1,−1, 0〉 −η15η15η23̄ + η13̄η15η25

Let X be the Euclidean space of dimension p = N(2j + 1), with j semi-integer, whose
coordinates consist of p independent creation operators ηαm, α � N and m � |j |, and let
U(n) be the Euclidean space of dimension q(n) = (

p + n

n

)
, whose coordinates consist of one

dependent variable φ and its derivatives

φm
α = ξm

α φ = ∂φ

∂ηαm

φmm′
αα′ = ξm

α ξm′
α′ φ = ∂2φ

∂ηαm∂ηα′m′
. . . . (15)

Let J (n) = X × U(n) be the nth-order jet space (see [4, chapter 2] and [1, chapter 4] for more
details) of dimension

dimJ (n) = p + q(n) q(n) =
(

p + n

n

)
p = N(2j + 1) (16)

whose coordinates consist of p independent variables ηαm and one dependent variable φ and
its derivatives, (15). Then the nth-order prolongation (see [1, theorem 4.16]) of the vector
fields (8) is given in the following theorem.

Theorem 1. The nth-order prolongation of the vector field Lm′
m defined in (8) is explicitly given

by

pr(n)Lm′
m = Lm′

m +
−j∑

m1=j

N∑
α1=1

ϕ
m′m1

m α1
φ̂α1

m1
+ · · · +

∑
−j�mi�j

1�αi�N

′
ϕ

m′m1···mn

m α1···αn
φ̂α1···αn

m1···mn
(17)

where the operators φ̂α···
m··· are derivatives in the coordinates (15)

φ̂α1···αn

m1···mn
= ∂

∂φ
m1···mn
α1···αn

(18)

and the coefficients ϕm′′m···
m′ α··· are given by

ϕ
m′m1···mn

m α1···αn
= −[

δm1
m φm′ ···m2

α1···αn
+ · · · + δmn

m φm1···m′
α1···αn

+ (−1)(m+m′)(δm1
m̄′ φ

m̄···m2
α1···αn

+ · · · + δ
mn

m̄′ φ
m1···m̄
α1···αn

)]
.

(19)

Proof. The characteristics (see [1, definition 4.8]) of the vector fields (8) are

Qm′
m = −Lm′

m φ =
N∑

α=1

[
ηαmφm′

α + (−1)m+m′
ηαm̄′φm̄

α

]
. (20)

Here, only one dependent variable φ is being considered. We can easily verify that the first
prolongation coefficient is zero

ϕm′
m = Qm′

m + Lm′
m φ = 0. (21)
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Therefore, using a recursive formula (see [1, page 119]), we have

ϕ
m′m1

m α1
= Dα1m1ϕ

m′
m −

N∑
α=1

[
(Dα1m1ηαm)φm′

α + (−1)m+m′
(Dα1m1ηαm̄′)φm̄

α

]
= −[

δm1
m φm′

α1
+ (−1)(m+m′)δ

m1
m̄′ φ

m̄
α1

]
. (22)

Using this last result and the recursive formula once more, we have

ϕ
m′m1m2

m α1α2
= Dα2m2ϕ

m′m1

m α1
−

N∑
α=1

[
(Dα2m2ηαm)φ

m′m1

α α1
+ (−1)m+m′

(Dα2m2ηαm̄′)φm̄m1
αα1

]
= −[

δm1
m φ

m′m2

α1 α2
+ δm2

m φm1m
′

α1α2
+ (−1)(m+m′)(δm1

m̄′ φ
m̄m2
α1α2

+ δ
m2
m̄′ φ

m1m̄
α1α2

)]
. (23)

Continuing this recursive process, the general formula (19) for the prolongation coefficients
will be found. �

As the symplectic vector fields (8) do not depend on any dependent variable, then
the prolongation (17) can be generalized to an arbitrary number q of dependent variables
φ → φa, a = 1, 2, . . . , q, by just adding another sum to the dependent variable indices a.
Naturally, equations (18) and (19) still hold for each dependent variable φa . The symplectic
differential invariants are determined in the next two subsections.

The prime on the sum symbol in (17) means that the sequence of index pairs
(α1,m1), . . . , (αn,mn) appearing in the coefficients ϕ must be ordered and also that repeated
pairs in it must be avoided. For example, let j = 1/2 and N = 1. Then take two
of all possible two-pair sequences formed by (α,m), for example, (1, 1/2), (1,−1/2) and
(1,−1/2), (1, 1/2). Their corresponding coefficients are

ϕm′11̄
m 11 := ϕ

m′+ 1
2 − 1

2

m 1 1 ϕm′1̄1
m 11 := ϕ

m′− 1
2 + 1

2

m 1 1 . (24)

Then only one coefficient, ϕm′11̄
m 11 or ϕm′1̄1

m 11 , should be taken into consideration (not both).
This same remark applies to the sequence of index pairs (m1, α1), . . . , (mn, αn) appearing in
the operators φ̂, (18). Note that in this example all denominators appearing in the angular
components m = ±1/2 in (24) were suppressed. Also, the minus sign was turned into a bar
sign, −m = m̄. This notation is used throughout this paper.

3.1. The N � 2j + 1 case

In the case N � 2j + 1, where N is the number of different bosons, we can find one invariant
frame, i.e. a set of linearly independent vector fields (see [1, definition 2.83]), and one invariant
coframe, i.e. a set of linearly independent horizontal one forms (see [1, definition 5.40]), which
allow us to write the invariants in a simple formula. This formula is given in the following
theorem.

Theorem 2. When N � 2j + 1, all strictly independent nth-order differential invariants
associated with the prolonged vector fields (17) are contained in the set

I (n)
α1α2···α2n

=
n∏

i=1

 −j∑
mi=j

ηα2i−1mi

 φm1m2···mn

α2α4···α2n
. (25)

Proof. We can easily verify that generators (9) and (10) commute. Consequently, generators
Cα1α2 given in (10) form an invariant frame of dimension N2. Then, if N � 2j + 1, there is
also an invariant coframe because the dimension of X (the number of independent coordinates)
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is N(2j + 1). An invariant coframe must have its dimension greater than or equal to the
dimension of X. In that case, the operators

Î α1α2 =
j∑

m1=−j

ηα1m1Dα2m1 (26)

where Dαm is the total derivative in the jet space (see [1, definition 4.14]), form a complete set
of invariant differential operators. Since the vector fields (8) are independent of the dependent
variable φ, then φ is a trivial invariant of zero order. Therefore, according to [1, theorem 5.48],
the differentiated invariants

I (1)
α1α2

= Î α1α2φ =
j∑

m1=−j

ηα1m1φ
m1
α2

(27)

contain a complete set of first-order differential invariants. A complete set of second-order
differential invariants can be obtained from

Î α3α4I
(1)
α1α2

=
j∑

m1,m2=−j

ηα1m1ηα3m2φ
m1m2
α2α4

+ δα1α4I
(1)
α2α3

(28)

which, up to first-order invariants, can be simplified to

I (2)
α1α2α3α4

=
j∑

m1,m2=−j

ηα1m1ηα3m2φ
m1m2
α2α4

. (29)

This recursive process leads to the general formula (25). �

The generalization of (25) to an arbitrary number q of dependent variables φa, a =
1, 2, . . . , q, is immediately obtained: it holds for each dependent variable φa because the
differential invariant operators (26) do not depend explicitly on the dependent variables. Thus,
when q > 1, the dependent variables are not mixed in the differential invariants.

Note that all invariants (25) are strong, i.e. pr(n)Lm′
m I (n)

α1α2···α2n
= 0 everywhere.

Furthermore, they are scale invariant by a global factor on the independent variables, i.e.
I (n)(γ x) = I (n)(x).

As a consequence of theorem 2, n = 0 is the order of stabilization (see the dimensional
considerations in [1, chapter 5]) whenever N = 2j + 1. The corresponding stable orbit
dimension is the algebra dimension (2j + 1)(j + 1). Therefore, the Sp(2j + 1) group acts
locally effectively (see [1, theorem 5.11]). The maximal orbit dimensions sn, i.e. the maximal
number of independent prolonged vector fields in J (n) belonging to a given symplectic algebra,
are shown in table 3 for the first three symplectic algebras. All orbit dimensions in table 3 were
obtained by computing the rank of the matrices formed by the coefficients of the prolonged
vector fields (17). Once the orbit dimension sn is known, then the number in of functionally
independent differential invariants of order at most n is

in = q

(
p + n − 1

n

)
+ p − sn (30)

where p is the number of independent coordinates and q is the number of dependent variables.
Of course, the number jn of strictly independent differential invariants of order n is

jn = in − in−1. (31)

Both quantities in and jn, for q = 1, j � 5/2 and N � 3, are shown in table 4.



4804 M S Barbosa and E S Bernardes

Table 3. The maximal orbit dimensions sn of sp(2j + 1), j = 1/2, 3/2, /5/2, realized with N
types of different bosons. All orbit dimensions were obtained by direct symbolic computation. In
all cases, we are using only one dependent variable (q = 1).

sp(2) sp(4) sp(6)

N s0 s1 s0 s1 s2 s0 s1 s2 s3

1 2 3 4 7 10 6 11 18 21
2 3 3 7 10 10 11 18 21 21
3 3 3 9 10 10 15 21 21 21
4 3 3 10 10 10 18 21 21 21
5 3 3 10 10 10 20 21 21 21
6 3 3 10 10 10 21 21 21 21

Table 4. Number in of independent invariants of order at most n and number jn of strictly
independent invariants of order n. N is the number of different bosons in each realization of each
algebra. In all cases, we are using only one dependent variable (q = 1).

sp(2) sp(4) sp(6)

N i0 j1/i1 j2/i2 j3/i3 i0 j1/i1 j2/i2 j3/i3 i0 j1/i1 j2/i2 j3/i3

1 1 1/2 3/5 4/9 1 1/2 7/9 20/29 1 1/2 16/18 51/69
2 2 4/6 10/16 20/36 2 5/7 36/43 120/163 2 5/7 73/82 364/446
3 4 6/10 21/31 56/87 4 11/15 78/93 364/457 4 12/16 171/187 1140/1327

Example 1 (j = 1/2, N = 2). Consider j = 1/2, i.e. the symplectic algebra sp(2), and
N = 2, i.e. two different types of bosons. Let

g =
(

0 −1

1 0

)
(32)

be the symplectic metric (1). Define the vectors

Xα = (ηα1, ηα1̄) �α = ∇αφ = (
φ1

α, φ1̄
α

)
α = 1, 2 (33)

and the Hessian matrices

Hµν =
(

φ11
µν φ11̄

µν

φ1̄1
µν φ1̄1̄

µν

)
H T

µν = Hνµ µ, ν = 1, 2. (34)

Thus, all invariants up to second order in (25) can be rewritten in a matrix form

I
(0)
1 = φ I

(0)
2 = −X1gX2 I (1)

µν = Xµ�ν I
(2)
µαβν = XµHαβXν. (35)

The ordinary invariant I
(0)
2 in (35) was also obtained by Chacón and Moshinsky [20] (see also

[38]). We can see from table 4 that the sets of invariants given in this example are maximal.
Moreover, the alternative matrix form introduced here will be very useful for treating the
special cases in the next section where the stabilization condition N � 2j + 1 has not been
achieved yet. In that case, the number of differential invariants from (25) is smaller than the
maximal number. Equally important is the fact that besides the invariants presented above,
the alternative matrix forms

Aµν = det Hµν, tr(gHµν)
k, tr(gHµµ)2k (36)
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are also sets of differential invariants. Of course, in the present case, these alternative invariants
are not functionally independent of those given in (35). For example, the very simple invariant
given by tr(gH12), which is linear in the second derivatives of φ, can be rewritten as

B12 = tr(gH12) = φ11̄
12 − φ1̄1

12 = 1

I
(0)
2

(
I

(2)
1122 − I

(2)
2121

)
(37)

where I
(2)
1122 and I

(2)
2121 are given in (35). Consequently, the relation (37) implies one relation

between the Hessians H12 and H21:

H12 − H21 + g tr (gH12) = 0. (38)

Although the functional dependence among these invariants is not an easy task to achieve,
similar relations to (38) can be found, e.g. the invariants in (36) satisfy

tr(gHµµ)2k = (−1)k2Ak
µµ Bµν = tr(gHµν) tr(gHµν)

k = F(Aµν, Bµν) µ �= ν

(39)

where F is a polynomial in Aµν and Bµν . Regardless of the fact that the alternative forms in
(36) are not functionally independent of those in (35), they are important in the construction
of dynamical systems. For instance, the invariants Aµν = det Hµν are null Lagrangians for
some variational problem (see section 4). Other important alternative matrix forms will be
presented in the next section.

As a final remark, it should be noted that the action of the Casimir operator (13) (j = 1/2
and N = 2) on the dependent variable φ is also a second-order invariant

Csp2(2)φ = 3X1�1 + 3X2�2 + X1H11X1 + X2H22X2 + 2X2[H12 − g tr(gH12)]X1. (40)

Using relation (38), this Casimir operator can be rewritten as a linear function in the previous
differential invariants

Csp2(2)φ = 3
(
I

(1)
11 + I

(1)
22

)
+ I

(2)
1111 + I

(2)
2222 + 4I

(2)
2121 − 2I

(2)
2211. (41)

3.2. The N < 2j + 1 case

If N < 2j + 1, there is no invariant coframe in the bosonic realization of section 2. If there is
no invariant coframe, then we cannot follow the previous (general) procedure to find closed
formulae for the new differential invariants, although we can write them in matrix forms
induced by those presented in the previous section. Having in mind that the second-order
differential invariants are the most required in physics and applications where the symplectic
algebra sp(6) is realized with up to three types of different bosons [17–20], which allows the
explicit construction of all of their irreducible representations by polynomials in the bosonic
operators, here we present matrix forms for the differential invariants of sp(2), sp(4) and sp(6)
up to second order and N � 3. Higher-order invariants for sp(4) and sp(6) can be obtained
following the lines in the next subsection. It should be mentioned that the examples presented
here can be easily generalized to any symplectic algebra.

Let Hmuν be the Hessian matrices with matrix elements given by

(Hµν)mm′ = φmm′
µν µ, ν � N m,m′ � |j | (42)

and g be the symplectic metric (1). Let Xµ be the vector formed by the independent variables
ηµm and �µ the gradient vector of the dependent variable φ,

Xµ = (ηµj , . . . , ηµj̄ ) �µ = (
φj

µ, . . . , φj̄
µ

)
. (43)
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Table 5. Matrix form for the differential invariants up to second order (n � 2) and up to three
types of bosons (N � 3) for the first three symplectic algebras sp(2j + 1), j = 1/2, 3/2, 5/2. The
matrix forms with n = 2 and N = 2, 3 also occur as differential invariants for N = 1 and n = 2.

n j N = 1 N = 2, 3

0 Any φ φ, XµgXν (µ �= ν)

1 1/2 X1�1 Xµ�ν

1 3/2, 5/2 X1�1 Xµ�ν , �µg�ν (µ �= ν)

2 Any X1(H11g)kH11(gH11)
kX1 Xµ�ν , �µg�ν

X1(H11g)kH11(gH11)
kg�1 XαHσσ ′Xα′ , XαHσσ ′g�α′ , �αHσσ ′gXα′ , �αgHσσ ′g�α′

�1g(H11g)kH11(gH11)
kg�1 Xα(Hσσ ′gHρρ′ )g�α′ , �αg(Hσσ ′gHρρ′ )g�α′

X1(H11g)2k�1 det Hσσ ′ , tr(gHσσ )2k, tr(gHσσ ′ )k

Then the independent invariants can be built from the matrix forms shown in table 5. We have
also explicitly verified the relation

Csp(2j+1)φ =
N∑

α=1

[(2j + 2)Xα�α + XαHααXα] + 2
N∑

α′>α=1

Xα[Hαα′ − tr(gHαα′)g]Xα′ (44)

among the Casimir operators and the differential invariants. The basic tools for writing
these differential invariants, including the Casimir operators, are implemented in the algebraic
computer package Killing [39, 40]. The next examples present a few remarks on these
invariants.

Example 2 (j = 1/2, N = 1). The differential invariants, all functionally independent, for
sp(2), up to second order, N = 1, are given in table 5:

I
(0)
1 = φ I

(1)
1 = X1�1 I

(2)
1 = X1H11X1

I
(2)
2 = X1H11�̃1 I

(2)
3 = �̃1H11�̃1

(45)

where

H11 =
(

φ11
11 φ11̄

11

φ1̄1
11 φ1̄1̄

11

)
g =

(
0 −1

1 0

)
(46)

and

X1 = (η11, η11̄) �1 = (∇1φ) = (
φ1

1 , φ
1̄
1

)
�̃1 = �1g = (

φ1̄
1 ,−φ1

1

)
. (47)

There is only one more nontrivial alternative second-order matrix form

A11 = det H11 (48)

since, in this case

tr(gH11)
2k+1 = 0 tr(gH11)

2k = 2(−1)kAk
11. (49)

The remaining matrix forms in table 5 are trivial combinations (products and powers) of
invariants (45) and (48), e.g.,

X(H11g)2k� = (−1)kI
(1)
1 Ak

11 X(H11g)2k+1� = (−1)k+1I
(2)
2 Ak

11. (50)

Of course, the alternative invariant (48) is not functionally independent of those in (45), but
its functional form is not as simple as those in (49) or (50).

In fact, for sp(2) with N = 1, we can univocally write all differential invariants of any
order in a matrix form. For example, the four third-order invariants are

I
(3)
1 = X1V1 I

(3)
2 = X1V2 I

(3)
3 = X1V3 I

(3)
4 = �̃1V3 (51)
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where

V1 = (X1H1X1, X1H2X1) V2 = (X1H1�̃1, X1H2�̃1) V3 = (�̃1H1�̃1, �̃1H2�̃1)

(52)

and H1 and H2 are the Hessians of φ1
1 and φ1̄

1 , respectively,

H1 =
(

φ111
111 φ111̄

111

φ111̄
111 φ11̄1̄

111

)
H2 =

(
φ111̄

111 φ11̄1̄
111

φ11̄1̄
111 φ1̄1̄1̄

111

)
. (53)

Vectors X1 and �̃1 are those given in (47). The five fourth-order differential invariants can be
written as

I
(4)
1 = X1V1 I

(4)
2 = X1V2 I

(4)
3 = X1V3 I

(4)
4 = X1V4 I

(4)

5 = �̃1V4 (54)

with

V1 = (X1A1, X1A2) Ai = (
X1HiX1, X1Hi+1X

T
1

)
i = 1, 2

V2 = (X1A1, X1A2) Ai = (X1Hi�̃1, X1Hi+1�̃1) i = 1, 2

V3 = (X1A1, X1A2) Ai = (�̃1Hi�̃1, �̃1Hi+1�̃1) i = 1, 2

V4 = (�̃1A1, �̃1A2) Ai = (�̃1Hi�̃1, �̃1Hi+1�̃1) i = 1, 2

(55)

and the Hessians of φ11
11 , φ

11̄
11 and φ1̄1̄

11 , respectively

H1 =
(

φ1111
1111 φ1111̄

1111

φ1111̄
1111 φ111̄1̄

1111

)
H2 =

(
φ1111̄

1111 φ111̄1̄
1111

φ111̄1̄
1111 φ11̄1̄1̄

1111

)
H3 =

(
φ111̄1̄

1111 φ11̄1̄1̄
1111

φ11̄1̄1̄
1111 φ1̄1̄1̄1̄

1111

)
. (56)

It should be noted that only the invariants I
(1)
1 , I

(2)
1 , I

(3)
1 and I

(4)
1 came from (25). The

remaining invariants were obtained by directly solving their respective differential equations

pr(n)Lm′
m I (n) = 0 m,m′ = 1,−1 (57)

using a polynomial ansatz to speed up the resolution. The matrix forms presented here were
generalized and implemented in an algebraic computer code [40, Routine In1 S]. Therefore,
in view of theorem 2 and the results presented in this example, any complete set of differential
invariants, of any order, for sp(2), realized with an arbitrary number of different types of
bosons, can be analytically computed.

Example 3 (j = 3/2, 5/2, N � 3). The differential invariants up to second order for the
symplectic algebras sp(4) and sp(6), both realized with three types of different bosons at most,
are given in table 5. When N = 1, the matrix forms with n = 2 and N = 1 in table 5 must be
used in addition to other matrix forms with n = 2 and N = 2, 3 in the same table. Since all Greek
indices are equal to 1 when N = 1, powers greater than 2, such as X1(H11g)4�1, must be used
in order to complete the sets of independent invariants. This implies huge expressions; for
instance, the second-order invariant X1(H11g)4�1 has 3222 terms. The situation gets simpler
for higher number, N, of types of bosons. For example, there is no need to use those matrix
forms with n = 2 and N = 1 in table 5 when N � 2. It should also be remarked that there are
no such relations as (38) or (39) when j � 3/2, even when N = 1.

Although table 5 only presents invariants up to second order, higher-order invariants
(n � 3) can be calculated following the procedure outlined in example 2. Naturally, all matrix
forms listed in table 5 apply to any symplectic algebra.
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4. Applications

We present here how the differential invariants can be used to build a toy model having Sp(2)
as its dynamical group of symmetry. In fact, each second-order differential invariant in table 5
is an sp(2)-invariant Lagrangian, as it satisfies the condition pr(n)vkL + LDivξk = 0, for
Div(ξ) = 0, where ξ(ηαm) are the coefficients of the vector fields (8), regardless of how many
bosons are being used. In the following paragraphs, we present a few comments on these
Lagrangians.

Our first goal is to find the null Lagrangians E(L) ≡ 0, where E is the Euler operator
(see [4, definition 4.3]), i.e. the Lagrangians whose Euler–Lagrange expressions E(L) vanish
identically. A null Lagrangian is a total divergence (see [4, theorem 4.7]), which implies, by
the divergence theorem, that the associated variational problem is trivial, since the integral only
depends on the boundary values of φ. The differential invariants tr(gHµν) and det(Hµν), where
Hµν are the Hessians given in (42) and g is the symplectic metric (1), are null Lagrangians
for any symplectic algebra realized by an arbitrary number of bosons, since they are linear
and quadratic homogeneous polynomials of the top-order derivatives of φ alone (see [41] for
further details), respectively. In fact, we can verify it explicitly,

E(Aµν) = 0 E(Bµν) = 0 Aµν = det Hµν

Bµν = tr(gHµν) (µ �= ν) N � 1.
(58)

We can easily find many new examples besides these well-known null Lagrangians. For
instance, when N = 1, there is one null Lagrangian among the second-order invariants given
in (45):

E(X1H11X1) = 6 E(X1H11�̃1) = 0 E(�̃1H11�̃1) = −6A11 (59)

where �̃µ = �µg and Xµ and �µ are given in (43). When N = 2 there are many other
null Lagrangians such as the six of them among the ten canonical second-order invariants
XµHαβXν given in (35):

E(XµH12Xµ) = 0 E(XµHααXν) = 0. (60)

The Euler–Lagrange expressions for the remaining canonical second-order invariants in (35)
are constants. Many other null Lagrangians, which are also linear on second derivatives of φ,
are given by the alternative matrix forms shown in table 5:

E(XµHαα�̃µ) = 0 (µ �= α) E(XµHαα�̃ν) = 0 (µ �= ν)

E(XµHαβ�̃ν) = 0 (µ �= ν, α �= β).
(61)

Note that the null Lagrangians (61) also have the first derivatives of φ besides the second
derivatives present in the null Lagrangians (60). More null Lagrangians, which are quadratic
on the second derivatives of φ, can be chosen among the alternative matrix forms given in
table 5, e.g.

E(X1HµµgHµµX2) = 0 E(�̃1HµµgHµµ�̃1) = 0. (62)

Just for completeness, it is worth saying that there are only two null Lagrangians of first order

E(X1�2) = 0 E(X2�1) = 0 E(�̃1g�̃1) = 2 trH12 (63)

as the Euler–Lagrange expressions for the remaining canonical first-order invariants in (35)
are constants. Because the relations

�̃1HµµgHµµ�̃1 = −(�̃1g�̃1)Aµµ (64)
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exist, observe that the last Euler–Lagrange expression in (63) and the last term in (62) show
us explicitly that the product of non-null Lagrangians can be a null Lagrangian.

Our second goal is to present new solutions to the Helmholtz inverse problem [42]. The
starting point is to find invariants satisfying the Helmholtz condition D∗

P = DP , where DP is
the Fréchet derivative (see [4, definition 5.24]). As an example, all null invariants appearing in
(58) and (60) have self-adjoint Fréchet derivatives. Note that if P is one of those null invariants
(E(P ) = 0) satisfying the Helmholtz condition, then, up to a constant multiple, L = φP is
easily seen to be a Lagrangian whose Euler–Lagrange expression is E(L) = P . This result
is in total agreement with the homotopy formula (see [4, theorem 5.92]), for our differential
invariants are all homogeneous functions in the dependent variable φ. As another example,
the following two non-null invariants also satisfy the Helmholtz condition:

E(X1H21�̃1) = 2 trH12 E(X2H12�̃2) = −2 trH12. (65)

Note that these two Euler–Lagrange expressions are still differential invariants.
Our final goal is to find Sp(2)-invariant evolution equations. Let L be a Lagrangian chosen

among the differential invariants given in table 5 whose Euler–Lagrange expression E(L) is
non-constant. We have verified that E(L) are indeed differential invariants, which means Sp(2)
is a group of volume-preserving transformations on the space spanned by the independent (η)
and dependent (φ) variables (see [41, proposition 4.5]). Indeed, as the vector fields (8) are
divergenceless and their characteristics do not depend on φ, then Sp(2) is a volume-preserving
group (see [41, infinitesimal condition 43]). Therefore, according to [33, corollary 4.6], up
to a constant multiple, φt = L(x, u(n)) is an Sp(2)-invariant evolution equation, where t is an
additional independent variable (denoting time).

5. Conclusions

In this study, we first reviewed a divergenceless bosonic realization for symplectic algebras
sp(2j + 1), with j semi-integer, over the fundamental irreducible representation and having N
types of boson operators. Using the prolongation technique, (absolute) differential invariants
were obtained. This technique and the present realization allowed us to find a closed expression
for calculating the differential invariants (of any order) when N � 2j + 1. Moreover, they are
all invariant by multiplying the independent variables by a constant factor (scale-invariant).
Unfortunately, this same situation does not hold when N < 2j + 1. In the latter case, the
differential invariants up to second order were explicitly presented for the symplectic algebras
sp(2), sp(4) and sp(6) realized by up to three types of bosons. In particular, an algorithm was
developed to compute all differential invariants in matrix forms for the symplectic algebra
sp(2). This algorithm, which is very intuitive, can be further generalized to other symplectic
algebras. It should be mentioned that the second-order Casimir operators are second-order
polynomials in the differential invariants.

Differential invariants over the fundamental representation and their semi-products with
translations were also determined in [11] to symplectic algebras realized in a different way
from the present study. Here, the symplectic algebras sp(2j + 1) are realized in such a way
that a polynomial basis in the creation operators for any irreducible representation can be
constructed by realizing them at least with a number N of different types of bosons equal to
j + 1/2. In [11], the bosonic realization always has N = 2j + 1. Consequently, its ordinary
and differential invariants are particular cases (N = 2j + 1) of those presented here.

We have also shown through explicit examples how Lagrangians as well as evolution
equations, both invariant under the symplectic group, can be built from the sp(2) differential
invariants. Moreover, we have added many new solutions to the Helmholtz version of the
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inverse problem of the calculus of variations, which has been studied by many authors (see
[4, 42] and references therein): there are symplectic differential invariants satisfying the
Helmholtz condition which are the Euler–Lagrange equations for some variational problems.
More extended symplectic dynamical systems and their conservation laws, including sp(4)
and sp(6), which can be relevant to applications in nuclear physics as well as in molecular
biology, are under our consideration.

A set of symbolic procedures was implemented [40] (http://www.if.sc.usp.br/killing)
in order to handle the basic tools from the prolongation theory, the bosonic realization of
symplectic algebras and their differential invariants for all cases presented in this paper as
well as the necessary tools for studying new cases. In particular, all examples presented
here were computed and verified by symbolic computation. See also the Vessiot package
(http://www.math.usu.edu/∼fg mp) for more jet space computations.
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Appendix A. Bosonic realization to the sp(4) algebra

The polynomial realization (8) to sp(4) is given in table 1 for two types of bosons (N = 2).
Also, the root system and the unique labelling to the adjoint representation are shown in table 1.
The root system is shown in the first three columns in three different bases [39, 43]. The
corresponding sp(4) elements Lm′

m are shown in the last two columns, where the last column
is the Cartan–Weyl notation used in [44]. The fourth column shows the ‘quantum numbers’
of each vector of the adjoint representation.

The sp(4) algebra has three sp(2) algebras: sp1(2) = {
L3

3,L3̄
3,L3

3̄

}
, sp2(2) = {

L1
1,L1̄

1,L1
1̄

}
and sp1(2) = {

L3
3,L1

3,L3
1

}
. The last two algebras are canonical (non-orthogonal) while the

first two are orthogonal and appear in the canonical chain

sp(4) ⊃ sp1(2) ⊕ sp2(2). (A.1)

The bosonic technique developed by Moshinsky et al [33, 34] is also powerful to construct
specific irreducible representations (irreps) of any dimension. Let us consider two examples:
the adjoint irrep [2, 0] and the fundamental irrep [1, 0]. Their weight systems are given in
tables 1 and 2 (first three columns), respectively. The fourth column in both tables shows the
algebraic quantum numbers [44, 45] of these irreps in the canonical chain (A.1). In the fourth
column, σi is the highest weight of spi (2) in the chain (A.1) and hi = σi, σi − 2, . . . ,−σi

are its corresponding weights. The fifth column presents the corresponding polynomial basis
adapted to the chain (A.1). The polynomials in the first row of each table (the polynomial of
highest weight) were found by Chacón and Moshinsky [20]. Having the polynomial of highest
weight, the remaining polynomials are obtained by the action of the elements Lm′

m given in
table 1.

A scalar product between the basis vectors Pi and Pj can be defined as

Pi · Pj = 〈0|P †
i Pj |0〉 (A.2)

where all creation operators η must be replaced by destruction operators ξ in the Hermitian
transposition

[P(η)]† = P(ξ) (A.3)
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and |0〉 is the vacuum state (or a direct product of vacuum states) defined by

ξ |0〉 = 0. (A.4)

The analytic expressions for the matrix elements of any irreducible representation adapted
to the chain (A.1) are given in [44]. These analytical expressions, together with many other
properties from the representation theory of simple Lie algebras, are available in the symbolic
computer package Killing [39].
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(Basle: Birkhauser)
[17] Hornos J E M and Hornos Y M M 1993 Algebraic model for the evolution of the genetic code Phys. Rev. Lett.

71 4401
[18] Hornos J E M, Hornos Y M M and Forger M 1999 Symmetry and symmetry breaking: an algebraic approach

to the genetic code Int. J. Mod. Phys. B 13 2795
[19] Kent R D, Schlesinger M and Wybourne B G 1998 On algebraic approaches to the genetic code Can. J. Phys.

76 445
[20] Chacón E and Moshinsky M 1995 Basis of irreps of the chain of Lie algebras sp(6) ⊃ sp(4)⊕ su(2) ⊃ su(2)⊕

su(2) ⊕ su(2) Topics in Theoretical Physics—A Festschrift for Paulo L Ferreira ed V C Aguilera-Navarro,
D Galetti, B M Pimentel and L Tomio (São Paulo: IFT) p 337

[21] Iachello F and Arima A 1987 The Interacting Boson Model (Cambridge: Cambridge University Press)
[22] Dragt A J 1991 Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics (College Park,

MD: Center for Theoretical Physics, University of Maryland)
[23] Carvalho M J, Rowe D J, Karram S and Bahri C 2002 Optimal basis states for a microscopic calculation of

intrinsic vibrational wave functions of deformed rotational nuclei Nucl. Phys. A 703 167 (see references
therein)

[24] Rowe D J 1985 Microscopic theory of the nuclear collective model Rep. Prog. Phys. 48 1419
[25] Escher J and Draayer J P 1998 Fermion realization of the nuclear Sp(6, R) model J. Math. Phys. 39 5123
[26] Rowe D J 1996 Dynamical symmetries of nuclear collective models Prog. Part. Nucl. Phys. 37 265
[27] Wigner E P 1959 Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Pure and

Applied Physics vol 5) (New York: Academic)
[28] Fano U 1959 Irreducible Tensorial Sets (New York: Academic)



4812 M S Barbosa and E S Bernardes

[29] Messiah A 1976 Quantum Mechanics (New York: Wiley)
[30] Merzbachen E 1998 Quantum Mechanics (New York: Wiley)
[31] Schwinger J 1965 On angular momentum Quantum Theory of Angular Momentum ed L C Biedenharn

and H van Dam (New York: Wiley)
[32] Moshinsky M 1962 The harmonic oscillator and supermultiplet theory. (I) The single shell picture Nucl. Phys.

31 384
[33] Moshinsky M 1963 Bases for the irreducible representations of the unitary groups and some applications

J. Math. Phys. 4 1128
[34] Moshinsky M 1968 Group Theory and the Many-Body Problem (New York: Gordon and Breach)
[35] Stephani H 1989 Differential Equations. Their Solutions Using Symmetries (Cambridge: Cambridge University

Press)
[36] Bluman G W and Klumei S 1989 Symmetries and Differential Equations (Berlin: Springer)
[37] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic)
[38] Forger M 1998 Invariant polynomials and Molien functions J. Math. Phys. 39 1107
[39] Bernardes E S 2000 Killing—an algebraic computational package for Lie algebras Comput. Phys. Commun.

130 137
[40] Barbosa M S and Bernardes E S 2003 SpDifInv—differential invariants for symplectic Lie algebras: an add-on

to Killing (an algebraic computational package for Lie algebras) Comput. Phys. Commun. submitted
[41] Olver P J, Sapiro G and Tannenbaum A 1997 Invariant geometric evolutions of surfaces and volumetric

smoothing SIAM J. Appl. Math. 57 176
[42] Anderson I M and Thompson G 1992 The inverse problem of the calculus of variations for ordinary differential

equations Mem. Am. Math. Soc. 98 473
[43] Chen Jin-Quan 1989 Group Representation Theory for Physicists (Singapore: World Scientific)
[44] Bernardes E S 1999 Matrix elements for the symplectic sp(4) Lie algebra J. Phys. A: Math. Gen. 32 6295
[45] Cerkaski M 1987 Branching rules for Sp(2n) algebra reduction on the chain Sp(2n−2)⊗Sp(2) J. Math. Phys.

28 989


